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Nonlinear modulational instability of wavepackets is one of the mechanisms
responsible for the formation of large-amplitude water waves. Here, mechanically
generated waves in a three-dimensional basin and numerical simulations of nonlinear
waves have been compared in order to assess the ability of numerical models to
describe the evolution of weakly nonlinear waves and predict the probability of
occurrence of extreme waves within a variety of random directional wave fields.
Numerical simulations have been performed following two different approaches:
numerical integration of a modified nonlinear Schrödinger equation and numerical
integration of the potential Euler equations based on a higher-order spectral method.
Whereas the first makes a narrow-banded approximation (both in frequency and
direction), the latter is free from bandwidth constraints. Both models assume weakly
nonlinear waves. On the whole, it has been found that the statistical properties of
numerically simulated wave fields are in good quantitative agreement with laboratory
observations. Moreover, this study shows that the modified nonlinear Schrödinger
equation can also provide consistent results outside its narrow-banded domain of
validity.
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1. Introduction
A proper description of the probability of occurrence of extreme waves is vital for

the design and operation of marine structures. Many mechanisms can be responsible
for the formation of extreme events such as the wave–current interaction, linear
Fourier superposition and nonlinear dispersive focusing and modulational instability
(see e.g. Kharif & Pelinovsky 2003; Dysthe, Krogstad & Müller 2008, and references
therein for a complete review). In the open ocean, in the absence of strong currents,
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the statistical properties of water waves can be conveniently described by modelling
the surface elevation with a second-order expansion in the wave steepness ε of the
water wave equations (Longuet-Higgins 1963). Based on this approach a number of
second-order probability distributions have been proposed by many authors in the
past few decades (see e.g. Tayfun 1980; Arhan & Plaisted 1981; Prevosto, Krogstad &
Robin 2000; Forristall 2000; Tayfun & Fedele 2007).

Despite the fact that second-order models agree with field measurements reasonably
well (see e.g. Forristall 2000; Toffoli et al. 2007), deviations from second-order
based statistical distributions are still possible (Bitner-Gregersen & Magnusson 2004;
Petrova, Cherneva & Guedes Soares 2006). In this respect, it is important to mention
that the second-order approximation can provide an accurate estimate of the skewness
of the surface elevation, but it is not in principle adequate to describe the whole
probability density function (p.d.f.; see Janssen 2009). Furthermore, a second-order
expansion only includes effects related to bound waves, while the nonlinear dynamics
of free waves is neglected. To third order in wave steepness, however, wavetrains can
be unstable to small perturbations which can cause a local exponential growth in
the wave amplitude within a time frame of a few tens of wave periods (Janssen
2003). The mechanism involved is basically a generalization of the Benjamin–
Feir instability (Benjamin & Feir 1967) or modulational instability (Zakharov
1968).

At cubic order, the instability of quasi-periodic deep-water wavetrains due to
modulational perturbations is governed by the nonlinear Schrödinger equation
(NLS equation; Zakharov 1968). This equation can be derived from the Euler
equations assuming potential flow of free-surface waves that are weakly nonlinear
(i.e. ε = ka � 1, where k is the wavenumber and a is the wave amplitude) and
have narrow bandwidth (�k/k � 1, where �k is a modulation wavenumber). A
modification of the NLS equation, which takes into account the fourth order
in wave steepness and bandwidth, was derived by Dysthe (1979) on the basis
of a systematic asymptotic procedure (this equation is known as the Dysthe
equation). It should be kept in mind that the bandwidth constraint seriously
limits the application of nonlinear Schrödinger equations for ocean wave fields.
Therefore, Trulsen & Dysthe (1996) extended the Dysthe equation with the
addition of higher-order dispersive terms allowing the description of slightly broader
bandwidths.

Nonlinear Schrödinger equations have received considerable attention by wave
researchers primarily due to their simplicity and to their integrability using the
inverse scattering transform (Zakharov & Shabat 1972). Moreover, they are not
computationally expensive. Thus, numerical models based on such equations are
particularly suitable to investigate wave statistics, which requires the calculation of
many realizations of a random sea surface (see, for example, Onorato et al. 2001;
Onorato, Osborne & Serio 2002a; Socquet-Juglard et al. 2005; Gramstad & Trulsen
2007). In this respect, model results show that the instability of wavepackets and the
consequent growth of large-amplitude waves can modify substantially the form of
the p.d.f. of the surface elevation. Strong deviations from Gaussian and second-order
statistics occur for narrow-banded near-unidirectional wave spectra where most of
the energy is confined within a narrow range of frequencies and directions (Onorato
et al. 2001; Socquet-Juglard et al. 2005). As the directional spreading increases to that
of more realistic directional wave fields, the deviations from Gaussian wave statistics
diminish, rendering a short-crested sea with only weakly non-Gaussian wave statistics.
Under these circumstances the p.d.f. of the surface elevation matches second-order
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predictions (Onorato et al. 2002a; Socquet-Juglard et al. 2005; Gramstad & Trulsen
2007).

The effect of modulational instability on random wave fields, and in particular
the transition between strongly and weakly non-Gaussian statistics, were confirmed
in a number of wave flume (Onorato et al. 2005b, 2006) and directional wave tank
experiments (Stansberg 1994; Denissenko, Lukaschuk & Nazarenko 2007; Onorato
et al. 2009a ,b; Waseda, Kinoshita & Tamura 2009). Nonetheless, a direct quantitative
comparison between numerical model results and laboratory experiments has not
been discussed yet. While discrepancies in deterministic evolution between nonlinear
Schrödinger equations and exact models are well documented (see e.g. Clamond et al.
2006), our present goal is to assess how well the two selected numerical models
capture the statistical properties of directional wave fields.

Because of the narrow bandwidth constraint, the nonlinear Schrödinger equations
are not well suited for describing broad-banded sea states. In order to improve
the description of a broad-banded sea, one may use a model without bandwidth
constraints. One such model is the Zakharov equation, which describes the evolution of
weakly nonlinear waves of any bandwidth, and may be used in numerical simulations
(see e.g. Annenkov & Shrira 2001). The surface elevation may also be simulated
directly from the potential Euler equations. In this respect, there exist a number
of methods that allow the simulation of fully nonlinear waves (see, for example,
Tsai & Yue 1996; Bateman, Swan & Taylor 2001; Clamond & Grue 2001; Zakharov,
Dyachenko & Vasilyev 2002; Fochesato & Dias 2006). These models have been used
to investigate the evolution of waves of exceptional wave steepness and height, i.e.
rogue or freak waves (e.g. Clamond & Grue 2001; Fochesato, Grilli & Dias 2007).
However, they have not been applied to the computation of random directional wave
fields over a large spatial domain due to the computational burden. A promising
method that allows the prediction of statistical properties of fully nonlinear waves
was recently presented by Gibson, Swan & Tromans (2007), who combined the fully
nonlinear wave model by Bateman et al. (2001) with a spectral response surface
method; this study, however, was limited to unidirectional waves. In several studies
(see e.g. Tanaka 2001a , 2007; Mori & Yasuda 2002; Ducrozet et al. 2007; Toffoli
et al. 2007, 2008a , 2009), the simulation of a large number of realizations of the
random sea surface was conveniently calculated from truncated Euler equations by
using a higher-order spectral method (HOSM), which was derived independently by
Dommermuth & Yue (1987) and West et al. (1987). Results for directional sea states
seem to be consistent with previous simulations of Schrödinger-type equations.

As the observation of extreme waves is rare in nature, model results represent an
important source of information for their statistics. Therefore, there is a substantial
need for reliable and computationally efficient numerical tools. A quantitative
comparison between numerical predictions of the statistical properties of directional
wave fields and experimental observations is the main aim of the present study.
For this purpose, we make use of a set of observations of mechanically generated
short-crested waves with different degrees of directionality which were collected in a
directional wave tank (Onorato et al. 2009a). An estimation of the observed statistical
properties is then reconstructed by using two different approaches: (i) the modified
nonlinear Schrödinger equation (Trulsen & Dysthe 1996) and (ii) the truncated
potential Euler equations solved with an HOSM (Dommermuth & Yue 1987; West
et al. 1987). We stress that whereas the first is derived for narrow-banded conditions,
the latter is free from bandwidth constraints. However, both models assume weak
nonlinearity.
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This paper is organized as follows. In § 2, we briefly describe the laboratory
experiments. The descriptions of the numerical models as well as their initial
conditions are presented in § 3. It is important to mention that the numerical
experiments are carried out respecting the domain of validity of the equations;
resolution of the initial conditions is therefore chosen such that both models can
perform in their optimal conditions in terms of accuracy and computational time.
The differences between the two numerical approaches are discussed. As waves evolve,
the spectrum changes its shape with a consequent modification of the initial spectral
conditions. An analysis of the spectral changes is presented in § 4; experimental
and numerical results are compared. In § 5, a comparative analysis between the
statistical properties of observed and simulated directional wave fields is presented;
particular attention is given to the transition between strongly and weakly non-
Gaussian properties. The study is based on the p.d.f. of the surface elevation and its
third- and fourth-order moments (skewness and kurtosis respectively). Effects related
to the discreteness of the computational domain are discussed. Concluding remarks
are then presented in the last section.

2. Laboratory experiments
Laboratory tests have been performed at the Marintek wave facilities in Trondheim,

Norway. A detailed description of the facilities and experiments is presented in an
earlier paper (Onorato et al. 2009a). In the following, we only provide a brief summary.

2.1. The wave basin

Directional wave fields have been generated in a large rectangular wave basin with
dimensions of 70 m × 50 m. The basin is equipped with a wavemaker along the 70 m
side, which consists of altogether 144 individually computer-controlled flaps. This unit
can generate short-crested seas within a wide range of directional distributions of the
wave energy. The basin is also equipped with a system that is capable of changing
the water depth; for the present experiments the water depth was fixed at 3 m.

Wave measurements have been concentrated along the central axis of the basin
(see figure 1) to trace the evolution of the wave field as waves propagate from
the wavemaker. Wave probes, which are held across the water surface by tripods
standing on the bottom, are deployed at 5 m intervals. The temporal profile of the
surface elevation is recorded with a sampling frequency of 80 Hz. In this respect,
it is important to note that the recorded time series represents the wave field at
a fixed stage of development. At locations 5, 25 and 35 m from the wavemaker,
two additional probes were deployed to allow the reconstruction of directional wave
spectra (figure 1). At 25 m from the wavemaker, moreover, an eight-gauge array,
which was arranged as a regular heptagon plus a central probe, was also deployed.
A description of the available methods to reconstruct the directional wave spectrum
can be found in Young (1994) and Donelan, Drennan & Magnusson (1996). We
should mention that an inspection of directional spectra did not show any significant
reflection from the sidewalls.

Note that the experiments were carried out in a finite size basin. Therefore, the
discreteness of the facility may have affected the result (see, for example, Denissenko
et al. 2007). Nonetheless, a comparison with experimental results obtained in an
independent directional wave tank with different dimensions (Onorato et al. 2009b)
showed that wave statistics are not significantly affected by the aspect ratio of the
facility.



Evolution of weakly nonlinear random directional waves 317

−30 −20 −10 0 10 20 30
0

10

20

30

40

50
(a)

(b)

(c)

−3.5 −3.0 −2.5 −2.0 −1.5
24.0

24.5

25.0

25.5

−1 0 1
24.0

24.5

25.0

25.5

Directional wave maker

Array of
8 probes

Array of
3 probes

(m)
(m)

(m)

(m)

(m)

Array of 8 probes

Array of 3 probes

Figure 1. (a–c) Wave basin and positions of the wave gauges.

2.2. Conditions at the wave maker

Series of irregular waves were generated from an input spectrum with 16 384
frequencies distributed between 0.0 and 10.0 Hz. Amplitudes were randomly chosen
from the Rayleigh distribution, while the random phases were assumed to be uniformly
distributed in the interval [0, 2π). Therefore, an initial Gaussian wave field is here
used as input. It is important to mention, however, that in nature deviations from
Gaussianity are often present and consequently the wave amplitudes are not Rayleigh-
distributed and the phases are not uniformly distributed (see Bitner 1980). Adoption
of non-Gaussian initial wave conditions in the experiment and numerical models
might lead to different evolution of wave surface. This condition is not investigated
in the present study, however.

In order to have enough samples to produce a statistical analysis, four realizations
of the random sea surface with the same imposed spectrum were performed by using
different sets of random amplitudes and phases. For each test, 20 min of wave records
were collected, including the initial ramp-up. For all of the probes, a total of about
3.5 × 105 measures of the surface elevation were gathered. The variability of the stat-
istical properties of the sample can be estimated by using bootstrap methods (see e.g.
Emery & Thomson 2001). We observed that whereas this sample ensures a negligible
95 % confidence interval for the third-order moment of the p.d.f. (skewness), i.e.
±0.01, the fourth-order moment (kurtosis) is subjected to some variability; within the
95 % confidence intervals, the value of the kurtosis may vary within a range of ±0.12.

Experiments were conducted by imposing different input directional wave spectra
E(ω, ϑ) = S(ω) D(ϑ), where S(ω) represents the frequency spectrum and D(ϑ) is
a frequency-independent directional distribution. The energy distribution in the
frequency domain was described by using the Joint North Sea Wave Project
(JONSWAP) formulation (see e.g. Komen et al. 1994):

S(ω) =
2παg2

ω5
exp

[
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4
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, (2.1)
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Tp (s) α γ Hs (m) λp (m) kp (m−1) kpa BFI

1.0 0.014 3.0 0.06 1.56 4.02 0.13 0.70
1.0 0.016 6.0 0.08 1.56 4.02 0.16 1.10

Table 1. Parameters for the input JONSWAP spectra.
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Figure 2. Energy directional distribution as a function of the angle ϑ for different values of
the parameter N ; just for reference, the sech parametrization described in Komen et al. (1994)
is also included.

where ω is the angular frequency and ωp is the peak frequency; the parameter
σ is equal to 0.07 if ω � ωp and 0.09 if ω >ωp . For the present study, we have
chosen to describe the wave field with a peak period Tp = 1 s, which corresponds
to a peak wavelength λp of 1.56 m. Two different pairs of the Phillips parameter α

and the peak enhancement factor γ have then been chosen. This implies different
values of the wave steepness ε = kpa, where kp = 2π/λp is the peak wavenumber and
a is half the significant wave height, and the Benjamin–Feir index (BFI). Here the
BFI is calculated as the ratio of the wave steepness kpa to the spectral bandwidth
�k/kp ≈ 2�ω/ωp , where �k and �ω are measures of the width of the spectrum
estimated as the half-width at the half-maximum (see Onorato et al. 2006 for details).
The values of the input spectral parameters as well as those of the significant wave
height, wave steepness and BFI are summarized in table 1. Note that the amplitude a

in Socquet-Juglard et al. (2005) and Gramstad & Trulsen (2007) has been defined as
a =Hs/(2

√
2). Therefore, their steepness and BFI are a factor

√
2 smaller than those

defined here.
A cosN (ϑ) function is then applied to model the directional distribution of energy

(see, for example, Hauser et al. 2005). In order to consider different degrees of the
directional spreading, different values of the spreading coefficient N were used, ranging
from fairly long-crested (large N) to short-crested (small N) waves. The following
values were selected: N = 840, 200, 90, 50, 24 (see figure 2).



Evolution of weakly nonlinear random directional waves 319

3. Numerical methods
3.1. Modified nonlinear Schrödinger model

Simulations of the random sea surface were performed using the broader bandwidth
modified nonlinear Schrödinger (BMNLS) equation of Trulsen & Dysthe (1996).

NLS-type equations are usually expressed either in the complex amplitude of the
surface elevation or in the complex amplitude of the velocity potential. In this work
we have used the equations expressed in the non-dimensional complex amplitude of
the surface elevation.

Also, NLS-type equations can be formulated in different forms suitable for
describing the time evolution of a spatial field or the space evolution of a temporal
field. For the main numerical results in this paper, the form suitable for the time
evolution was employed. Note that the HOSM model can only be formulated in a
form suitable for time evolution. However, in § 5 the relation between the spatial and
temporal versions of the BMNLS equation is discussed and a comparison between
the two is presented.

The exact expressions for the temporal and spatial BMNLS equations, expressed
in the non-dimensional complex amplitude (B) of the surface elevation, are provided
below. Note that here and in the remaining § 3.1 we have adopted a non-
dimensional description where space and time are made non-dimensional with
the peak wavenumber and peak frequency, respectively. The temporal and spatial
BMNLS equations are given by
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Bx + 2Bt + iBtt − i
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respectively, where the induced mean flow potential φ̄ is governed by

φ̄xx + φ̄yy + φ̄zz = 0, −h < z < 0, (3.2a)

φ̄z = 1
2
(|B|2)x = −(|B|2)t , z = 0, (3.2b)

φ̄z = 0, z = −h. (3.2c)

Here the subsctipts denote partial derivatives. When B is known from (3.1a) or
(3.1b), the surface displacement and the velocity potential, including the effect of
bound waves, can be found from reconstruction formulae which express bound
contributions in terms of the free wave complex amplitude B . The surface elevation
η can be expressed as follows:

η = η̄ + 1
2

(
Bei(x−t) + B2e

2i(x−t) + B3e
3i(x−t) + · · · + c.c.

)
, (3.3)
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where the bound contributions are given by
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B3 = 3
8
B3. (3.4c)

Some general remarks regarding the accuracy of this reconstruction were given by
Gramstad & Trulsen (2010).

The numerical method of Lo & Mei (1987) is used to solve the BMNLS equations
numerically in a two-dimensional rectangular domain with a periodic boundary
condition in both horizontal directions. Additional details of the numerical method
can also be found in Socquet-Juglard et al. (2005). Since the basic unknown B ,
under the narrow-band assumption, is slowly varying, the integration step used in
the numerical integration can be chosen relatively large. Here, the non-dimensional
integration step is set to �t = �x = 2π/10, corresponding to 10 integration steps
per peak period in the temporal evolution and 10 steps per peak wavelength in
the spatial evolution. This choice is found to give a satisfactory accuracy, and the
invariant

∫
|B|2 dx is conserved within 0.3 % of the initial value in all simulations.

3.2. Higher-order spectral model

The evolution of the surface elevation was also modelled using the numerical
integration of the potential Euler equations. Assuming the hypothesis of an
irrotational, inviscid and incompressible fluid flow, the velocity potential φ(x, y, z, t)
satisfies the Laplace equation everywhere in the fluid. At the bottom (z = −∞), the
vertical velocity is zero (φz|−h = 0). At the free surface (z = η(x, y, t)), the kinematic
and dynamic boundary conditions hold (Zakharov 1968):

ψt + gη + 1
2

(
ψ2

x + ψ2
y

)
− 1

2
W 2

(
1 + η2

x + η2
y

)
= 0, (3.5)

ηt + ψxηx + ψyηy − W
(
1 + η2

x + η2
y

)
= 0, (3.6)

where W (x, y, t) =φz|η represents the vertical velocity evaluated at the free surface
and ψ(x, y, t) is the potential calculated on the surface. Note that (3.5) and (3.6)
include the contribution of free and bound waves. Moreover, they do not have any
constraints on the spectral bandwidth unlike the modified nonlinear Schrödinger
model.

Numerical simulations of (3.5) and (3.6) were performed with the HOSM proposed
by Dommermuth & Yue (1987) and West et al. (1987). A comparison of these
two approaches (Clamond et al. 2006) showed that the formulation proposed by
Dommermuth & Yue (1987) is less consistent than that proposed by West et al.
(1987). The latter, therefore, was applied for the present study.

The HOSM is a pseudo-spectral method which uses a series expansion in the wave
slope of the vertical velocity W (x, y, t) about the free surface. Here, we considered a
third-order expansion so that a four-wave interaction is included (see Tanaka 2001b,
2007). Note that the selected order of the expansion makes the HOSM consistent
with the modified nonlinear Schrödinger equation as both models describe third-order
effects. The expansion is then used to evaluate the velocity potential ψ(x, y, t) and
the surface elevation η(x, y, t) from (3.5) and (3.6) at each instant of time. All aliasing
errors generated in the nonlinear terms are removed (West et al. 1987; Tanaka 2001b).
The time integration is performed by means of a fourth-order Runge–Kutta method.
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A small time step, �t = Tp/100, is used to minimize the energy leakage. The accuracy
of the computation is checked by monitoring the variation of the total energy (see
e.g. Tanaka 2001a). Despite the fact that the energy content shows a decreasing trend
throughout the simulation, its variation is negligible as the relative error in total energy
does not exceed 0.4 % (this result is consistent with similar simulations performed by
Tanaka 2001a). A concise review of the HOSM can be found in Tanaka (2001a).

3.3. Initial conditions and simulations

The aim of the numerical simulations is to estimate the statistical properties of
the aforementioned laboratory-generated wave fields. Therefore, the initial spectral
conditions for the numerical experiments are assumed to be identical to the conditions
at the wavemaker (see § 2.2).

From the directional frequency spectrum, E(ω, ϑ), an initial two-dimensional
surface η(x, y, t = 0) was computed using first the linear dispersion relation to
convert from (ω, ϑ) to wavenumber coordinates (kx, ky), and then the inverse Fourier
transform with random amplitude and phase approximation; periodic boundary
conditions were imposed. Consistent with the laboratory experiments, the random
phases were assumed to be uniformly distributed over the interval [0, 2π), while the
amplitudes were Rayleigh-distributed. The velocity potential ψ(x, y, t = 0), needed for
the HOSM model, was then obtained from the input surface using the linear theory.

For the simulations of the potential Euler equations (HOSM), the wave field
was contained in a square domain of about 14 m with a spatial mesh of 256 × 256
nodes (�x = �y = 0.055 m); a larger number of nodes would require unreasonable
computational time. The selected grid provides a fine resolution of the physical domain
as the dominant wavelength is described by about 28 grid points. In the spectral space,
it allows that the maximum wavenumber, kmax , corresponds to the sixth harmonic
of the peak of the spectrum after the wavenumbers k affected by aliasing errors are
removed; a coarse resolution of the spectral peak is obtained, however.

The resolution adopted for the HOSM is not applicable for the modified nonlinear
Schrödinger model, because the HOSM resolution includes Fourier modes outside
the narrow bandwidth constraint of the BMNLS equation. Therefore, consistent with
the underlying narrow-band assumption, we only resolve Fourier modes inside the
square corresponding to a unity bandwidth. A uniform grid of 512 × 512 points
has been employed, which corresponds to a square domain of about 400 m for
wave fields with λp = 1.56 m. This implies a coarser grid in the physical domain,
but a much finer resolution in the spectral domain, compared to the HOSM. Note
that the resolution adopted for the BMNLS is to describe the free-wave complex
amplitude, B , not the surface itself. When reconstructing the surface, including higher
harmonic bound waves, a resampling is performed. For the resolution explained above
(nx × ny = 512 × 512 points to describe B), the minimum number of points that can
be used to describe the full surface including third-order bound waves is 3078 × 1536,
which corresponds to about 12 points per dominant wavelength.

The laboratory experiments provided time series at some fixed distances from the
wavemaker, i.e. the boundary condition imposed at x = 0 and the spatial evolution of
the waves along the basin. The same is the case for the numerical model based on
the spatial version of the BMNLS equation. However, the HOSM and the temporal
BMNLS equation provide the temporal evolution of an initial wave field imposed
at t = 0. This fundamental difference is a potential problem when comparing the
numerical results with the laboratory experiments. In the following analysis, the
comparison is based on the leading-order approximation that all properties are
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wave field characterized by γ = 6 and N = 840 at t = 24Tp: BMNLS (�); HOSM (+).

functions of x − cgt , where cg is the group velocity of the waves. Thus, it is assumed
that the location x = λp in the spatial evolution corresponds to the time t =2Tp in
the temporal evolution. A check on the validity of this assumption was performed by
comparing the results from the spatial and temporal versions for the BMNLS model.
This comparison is presented in § 5.

The total duration of the HOSM and temporal BMNLS simulations is set equal
to t = 60Tp . The output surface elevation and velocity potential are calculated every
six wave periods, i.e. at t = 6, 12, . . . , 54, 60Tp . Correspondingly, using the above-
mentioned approximation to relate the space and time evolution, simulations with the
spatial BMNLS equation were run up to x = 30λp , with output every third wavelength,
x = 3, 6, . . . , 27, 30λp . This is also consistent with the laboratory experiments where
the surface elevation was recorded up to x ≈ 30λp . Note that modulational instability
leads to deviations from normality within few peak periods or wavelengths (see e.g.
Janssen 2003; Socquet-Juglard et al. 2005; Onorato et al. 2006; Annenkov & Shrira
2009). Thus, the short evolution considered in this study is sufficient to capture the
formation of large-amplitude waves. Note also that the BMNLS equation may be
incapable of describing some effects which take place either close to the wavemaker
or soon after the start-up of the wavemaker. Because these effects are expected to
decay exponentially with the distance from the wavemaker, they should not be an
issue for the present study (see e.g. Shemer, Sergeeva & Slunyaev 2010).

The output surface elevation is then used to calculate the statistical properties of
the wave field. About 100 realizations with the same input spectrum and different
random amplitudes and phases were performed to achieve statistically significant
results. We verified that the aforementioned number of realizations leads to stable
estimates of the statistical moments from both models (see figure 3). In this respect,
we also mention that a large number of random realizations are expected to minimize
the effects related to the different sizes of the numerical domains (see e.g. Tanaka &
Yokoyama 2004). The 95 % confidence intervals are smaller than ±0.01 for the
third-order moment of the p.d.f. (skewness) and ±0.06 for the fourth-order moment
(kurtosis).
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4. Spectral changes
As the wave field propagates, the nonlinear interaction between wave modes

generates a transfer of energy that modifies the wave spectrum (see e.g. Longuet-
Higgins 1976; Onorato et al. 2002b; Dysthe et al. 2003). The nonlinear energy
transfer is responsible for redistributing the energy such that the spectral peak is
downshifted (see, for example, Hasselmann 1962; Onorato et al. 2002b). From the
laboratory experiments, we observed that the peak period increased up to 3 % at
x = 15λp , which means that the wavenumber at the spectral peak changed from 4 m−1

at x =0 to 3.80 m−1 at x = 15λp (additional details on the spectral downshift observed
in the wave basin can be found in Onorato et al. 2009a). Approximately the same
variation of the peak period was also observed from the numerical simulations of the
numerical models.

A small fraction of the spectral energy is also transferred towards high wavenumbers
and redistributed along two characteristic directions, forming angles of about ±35.5◦

with the mean direction of propagation (Longuet-Higgins 1976). Thus, as a result, this
directional redistribution leads to the broadening of the directional spectrum towards
high wavenumbers (see Dysthe et al. 2003; Toffoli et al. 2010). In order to compare
the experimental and numerical results, the directional properties are summarized
into a mean directional spread. An estimate of the latter can be calculated as the
average over the wavenumber domain of the directional spread parameter, which, in
(k, ϑ) coordinates, can be expressed as follows (see e.g. Hwang et al. 2000):

σ2(k) =

⎛
⎜⎜⎝

∫ π/2

0

ϑ2 D(k, ϑ) dϑ∫ π/2

0

D(k, ϑ) dϑ

⎞
⎟⎟⎠

1/2

. (4.1)

Hereafter, the average value of σ2(k) over the wavenumber domain is referred to as
(σ2)m (note that small values of (σ2)m correspond to a large value of N). In figure 4,
we present a comparison between the experimental and simulated mean directional
spreads at x =15λp for the experiments and at t = 30Tp for both simulations
(only the directional wave fields with kpa = 0.16 are shown). On the whole, the
numerical simulations capture the experimental mean directional spread reasonably
well. However, the HOSM tends to underestimate the broadening of the directional
spectrum for very long crested fields (small values of (σ2)m). This is not surprising
because the course resolution in the Fourier space adopted for the HOSM is not
enough to capture the variations of the initially narrow directional distribution.

5. Statistical properties
We now present a direct comparison between the statistical properties of the

experimental and simulated directional wave fields. As mentioned, when comparing
the evolution of skewness and kurtosis obtained from laboratory experiments with the
numerical simulations based on time evolution, we have assumed that the evolution in
time and space can be translated by applying the group velocity of the waves. To check
the validity of this approximation, simulations with the spatial version of the BMNLS
equation have been performed and compared with the temporal BMNLS equation.
Examples of the time and space evolution of the fourth-order moment (the kurtosis) of
the p.d.f., obtained using the two forms of the BMNLS equation, are shown in figure 5;
lower values in figure 5 correspond to the broad directional spread, N = 24, while
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Figure 4. Mean directional spread at x = 15λp (for experiments) and T = 30Tp (for
simulations). Simulations versus experimental results: BMNLS (�); HOSM (+).
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greater values correspond to the narrow directional spread, N = 840. In general, the
results from figure 5 show quite good agreement between the time and space evolution.
For N = 840, we note especially that the time/point of maximum kurtosis occurs in
agreement with the group-velocity transformation. For the broad directional spread,
however, a somewhat higher value of the kurtosis is seen for the space evolution
than for the time evolution. This may be partly explained by the fact that the
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Figure 6. (a–e) Evolution of the skewness for γ = 3. Experiments (�),
BMNLS (�) and HOSM (+).

simulated steepness is somewhat larger for the space evolution than for the time
evolution (about 6 % in the most broadband case, γ = 3, N =24). This difference is
due to the truncation of the spectra at unity bandwidth, since a larger part of the
total energy is located outside the truncation limit in the (kx, ky)-spectrum than in the
(ω, ϑ)-spectrum.

5.1. Skewness and kurtosis

In this section, we analyse the skewness and kurtosis of the surface elevation. Whereas
the former describes the vertical asymmetry of the wave profile, the latter provides an
indication of the occurrence of extreme events in the sample. For Gaussian processes,
the skewness and kurtosis assume the values of 0 and 3, respectively. In figures 6–9,
the skewness and kurtosis are presented as a function of the dimensionless distance
from the wavemaker; the wavelength (λp) associated with the input peak period is
here used as a normalizing factor.

As waves start propagating from the wavemaker, the nonlinear interaction between
wave components modifies the initially symmetric profile. Waves become more
vertically asymmetric with sharpening of the wave crests and the flattening of the
wave troughs; as a result, the skewness departs from the Gaussian statistics. This
deviation is mainly dominated by the bound modes, even though the dynamics of free
waves can weakly contribute (see Onorato, Osborne & Serio 2005a; Mori et al. 2007;
Toffoli et al. 2008b; Onorato et al. 2009a). Towards the end of the basin, however, the
skewness shows a decreasing trend as a consequence of the spectral downshift. This
reduces the steepness and hence the contribution of bound waves, which is in fact a
function of the steepness (see e.g. Tayfun 1980). These features are captured by both
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Figure 9. (a–e) Evolution of the kurtosis for γ = 6. Experiments (�),
BMNLS (�) and HOSM (+).

models rather well for both kpa = 0.13 and 0.16. However, the numerical models seem
to substantially overestimate the skewness especially for smaller steepness (differences
are clearly above the confidence intervals of ±0.01).

Because the instability of free-wavepackets to sideband perturbations gives rise to
large-amplitude waves, the kurtosis can deviate substantially from normality (see e.g.
Onorato et al. 2006). Such a deviation is well pronounced in long-crested wave fields.
In our laboratory experiments, we observed that it reaches its maximum after a fairly
short evolution equivalent to about 15–20 wavelengths, in agreement with previous
flume experiments (Onorato et al. 2005b); the kurtosis then slowly decreases towards
the end of the basin. For short-crested waves the departure from Gaussian statistics
becomes less accentuated. In the case of a broad directional distribution (e.g. N = 24),
in particular, the dynamics of free waves no longer provide a significant contribution
to the statistical properties of waves and the kurtosis only weakly deviates from
normality (more details can be found in Onorato et al. 2009a).

The observed dynamical evolution of mechanically generated waves is estimated
reasonably well by the numerical simulations from both BMNLS and HOSM in
wave fields characterized by moderate steepness (kpa = 0.13 in this study, figure 8).
Nonetheless, the HOSM tends to overestimate the kurtosis for very narrow directional
conditions (i.e. N = 840). This is not surprising, though, because the spectral resolution
implemented for these simulations is too coarse to capture the effects of such a
narrow directional spreading (see also figure 4). The finer spectral discretization
used in the BMNLS, in this respect, provides a more accurate approximation of
the laboratory results. When a larger steepness is taken into account (see figure 9),
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Figure 10. (a, b) HOSM simulation of the long-term evolution of the kurtosis. The initial
wave spectrum has γ =6, and N = 200 (+) and N = 24 (�).

however, differences between the numerical and experimental results become evident
also for more short-crested conditions. Apart from the tendency to overestimate the
kurtosis in wave fields with a very narrow initial directional spreading (N = 840),
the HOSM model overpredicts the occurrence of extreme events at short fetches
(x/λp < 15), even though the space scale for the occurrence of the maximum kurtosis
is consistent with the laboratory results. Also, simulations with the BMNLS model
tend to overestimate the kurtosis at short fetches. However, the BMNLS predicts the
formation of an overshoot after about 10 wavelengths, which does not agree with
either the HOSM model or the laboratory experiments. The prominence of this feature
vanishes with increased directionality. For an initially broad directional distribution
(N = 24), both simulations and experiments produce weak deviations from Gaussian
statistics. In this respect, we mention that the HOSM and BMNLS yield the same
results independently of the narrow-banded approximation of the BMNLS.

Importantly, for sufficiently steep and long-crested wave fields, the kurtosis would
reach subsequent maximum values after the initial overshooting if the wave field were
left free to propagate beyond 30λp . However, the deviation from normality would be
gradually attenuated owing to the downshift of the spectral peak, which reduces the
wave steepness, and the broadening of the directional spreading (see figure 10). In
the case of short-crested seas, the kurtosis would not show any significant deviation
from normality. Thus, the short evolution period considered in this study is sufficient
to address the most non-Gaussian properties of the wave field.

From a practical point of view, it is of great importance to verify the accuracy of
numerical models to predict the maximum kurtosis. In figure 11, we summarize the
maximum kurtosis as a function of the mean directional spread (4.1) for both models
and experiments. As mentioned earlier, short-crestedness results in a substantial
reduction of the effect of the modulational instability, which basically vanishes for
broad directional distributions (cf. Waseda et al. 2009; Onorato et al. 2009b). For
both of the selected wave steepnesses, the BMNLS and HOSM models provide a
good qualitative and quantitative estimate for the measured maximum kurtosis and
the transition from strongly to weakly non-Gaussian conditions. Note, however, that
the difference between the experimental and numerical kurtosis is lower than the
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Figure 11. (a, b) Maximum kurtosis as a function of the initial directional spread.
Experiments (�), temporal BMNLS (�), spatial BMNLS (∗) and HOSM (+).

statistical variability of the samples for N � 90 (or (σ2)m � 6.12), while it is slightly
larger for N � 200 (or (σ2)m � 4.35). The space evolution BMNLS equation appears
in most cases to give a slightly better estimate for the maximum kurtosis than
the time evolution BMNLS equation. For very narrow-banded directional spectra
(N =840 or (σ2)m = 2.6), however, the models overestimate the kurtosis, especially for
large steepness. This directional spreading, nonetheless, is not representative of real
ocean conditions.

5.2. Effect of discreteness on the probability of occurrence of extreme waves

The numerical models describe the evolution of the wave fields within a finite number
of grid points. In this respect, a number of studies have demonstrated that the
discreteness of the computational domain can influence how waves interact (see,
for example, Tanaka & Yokoyama 2004; Lvov, Nazarenko & Pokorni 2006). In
terms of spectral energy, however, Tanaka & Yokoyama (2004) observed that the
nonlinear energy transfer for a continuous spectrum can be reproduced regardless
of the dimension of the computational mesh, provided that an ensemble average is
taken over a sufficient number of random realizations (the coarser the resolution
the larger the number of realizations). Nonetheless, it is not yet completely clear
what is the effect of discreteness on wave statistics in general and the probability of
occurrence of extreme waves in particular. In the following, we use HOSM simulations
to investigate the variability of the kurtosis when the dimension of the computational
domain changes.

For convenience, the number of grid points was left unaltered, i.e. 256 × 256 (as
mentioned earlier, a larger number would require an unreasonable computational
time). The computational domain was however modified by changing the grid size
in the physical domain. Compared with the original computational domain, the
mesh size was almost doubled (�x = �y = 0.10 m). This implies a coarser grid in
the physical domain, where a dominant wavelength is now discretized by 16 grid
points, and a finer resolution in the spectral space, which however occurs at the
expense of high spectral components (after removal of aliasing errors, the maximum
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Figure 12. (a, b) Maximum kurtosis from HOSM simulations as a function of the initial
directional spread for sea states with γ = 6: �x = �y = 0.055m (�); �x = �y = 0.10 m (�).

wavenumber kmax = 3kp). The simulations were conducted considering the same initial
spectral conditions and following the same procedure described in § 3.3 (hence with
the same number or random realization, i.e. 100).

In figure 12, the maximum kurtosis as computed with different computational
grids is presented as a function of the initial mean directional spread. For spectral
conditions with kpa = 0.13 (or γ = 3), the changes in the computational domain
produce a rather significant reduction of the kurtosis. On average, the kurtosis is
reduced to about 4.9 %. In the case of steeper wave fields (kpa = 0.16 or γ = 6), the
modified computational domain does not have effects on the maximum kurtosis for
long-crested wave fields (N = 840 and 200 or (σ2)m = 2.6 and 4.35), while it reduces the
kurtosis to about 3.5 % for more short-crested conditions (N � 90 or (σ2)m � 6.12).
Note that a finer resolution in the spectral space provides a better description of the
spectral evolution also for long-crested wave fields. In this respect, after about 30Tp ,
the mean directional spread for N = 840 and 200 is consistent with both BMNLS
simulations and laboratory experiments.

Since the reduction of the maximum kurtosis may be due to both the finer grid in
the spectral space and the coarser resolution of the physical domain, it is difficult to
reach a firm conclusion. However, it is worth mentioning that these results are to a
certain extent consistent with the simulations of the BMNLS, which are computed
over a finer spectral space. For kpa = 0.13, in fact, the BMNLS equation shows a
systematically lower kurtosis than that computed by the HOSM. For kpa = 0.16, on
the other hand, the BMNLS shows a rather high kurtosis in long-crested sea states
and a lower kurtosis for more short-crested wave fields (see figure 11).

5.3. Probability density function of the surface elevation

In figures 13 and 14, we present the p.d.f. of the surface elevation when the maximum
kurtosis is recorded. For convenience, we scale the surface elevation by the concurrent
standard deviation σ . The numerical and experimental p.d.f.s are compared to the
Gaussian distribution and the Tayfun second-order distribution (see Tayfun 1980 and
(8) in Socquet-Juglard et al. 2005 for details).
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Figure 13. (a–e) The p.d.f. of the surface elevation for different directional spreading and
γ = 3: experiments (�), BMNLS (�) and HOSM (+). Normal distribution (dashed line) and
the Tayfun distribution (solid line) are also displayed.

In agreement with previous experimental and numerical studies (for example
Socquet-Juglard et al. 2005; Onorato et al. 2009a; Waseda et al. 2009), we observed
that the p.d.f. shows a substantial deviation of both its tails from the Tayfun
distribution, when the spectral energy is concentrated over a narrow range of
directions (crests are higher and troughs are deeper than the second-order model
predicts). Under these circumstances, in fact, the contribution of the nonlinear
dynamics of free wave modes dominates the statistical properties of the wave field.
Although the numerical models are not fully nonlinear, they are able to capture the
aforementioned deviations reasonably well for the selected initial steepness conditions.

As short-crestedness becomes more pronounced, however, the departure from the
second-order theory is significantly reduced regardless of the value of the initial
steepness (see cases with an initial directional spreading characterized by N � 90).
We did not observe any substantial deviations between the experimental and numerical
p.d.f.s, which fit rather well the second-order based distribution.

6. Conclusions
Experimental and numerical records of the surface elevation were studied to verify

the reliability of numerical models to predict wave statistics in directional wave
fields. To accomplish this task, laboratory experiments and numerical simulations
of a modified nonlinear Schrödinger equation and the potential Euler equations
were used to trace the evolution of the statistical properties of an initially Gaussian
surface; skewness, kurtosis and the p.d.f. of the surface elevation were investigated as
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Figure 14. (a–e) The p.d.f. of the surface elevation for different directional spreading and
γ = 6: experiments (�), BMNLS (�) and HOSM (+). Normal distribution (dashed line) and
the Tayfun distribution (solid line) are also displayed.

a function of the directional spreading. Note that although both models were run to
describe third-order effects, the first performs under the narrow-banded assumption
while the latter is free from any bandwidth constraints. Because of this constraint and
the computational intensity of the potential Euler equation, a different discretization
of the computational domain was implemented so that both models can run under
optimal conditions. Note, however, that the discreteness of the domain introduces
uncertainties of about 3–5 % in the value of the kurtosis.

The comparison between numerical and experimental results indicates that the
selected models approximate the evolution of the statistical properties reasonably
well. Discrepancies were encountered for a rather large initial steepness (kpa = 0.16),
resulting in an overestimation of the kurtosis at short distances from the wavemaker.
In the case of large steepness and narrow directional spread, the modified nonlinear
Schrödinger equation shows an overshoot in the evolution of the kurtosis taking
place at about t = 20Tp (x ≈ 10λp). This is not consistent with either the simulations
of the Euler equations or the laboratory experiments, where an overshoot, although of
smaller magnitude, took place somewhat later in the evolution. It is rather surprising
that the nonlinear Schrödinger model seems to perform the least well, compared to
experiments, in the case of a narrow spectrum, where, in principle, it is supposed to
perform the best. It is interesting to mention that the conditions at the wavemaker
are produced via a linear procedure and the evolution of the wave statistics is rather
sensitive to such conditions. Thus, a small deviation of the initial conditions from
Gaussianity, as often observed in nature, might lead to slightly different predictions.
However, this condition was considered in the present study.
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From a practical point of view, nevertheless, it is essential to assert whether the
models can provide a reasonable description of the maximum kurtosis as it is a
measure of occurrence for extreme wave events. In this respect, our results confirm
that there is good quantitative and qualitative agreement between the numerical and
experimental statistics. Some discrepancies were observed for a very narrow directional
distribution. We also remark that these results are based on discrete domains.
Therefore, although the numerical models satisfactorily reproduce the laboratory
experiments, more research is called for to achieve an accurate estimation of realistic
oceanic wave fields.

It is also important to mention that both models provide similar results also
for broad directional distributions despite the bandwidth constraint of the modified
nonlinear Schrödinger equation.
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